Section 15.1 Double Integrals over Rectangles

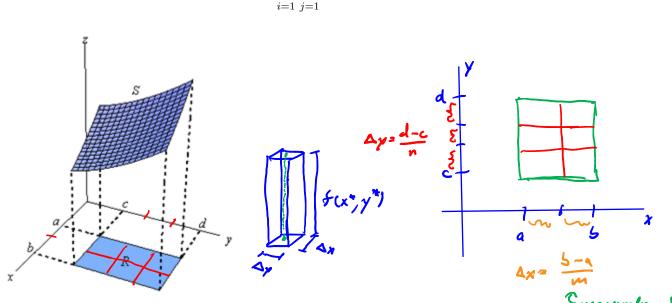
Let f be a continuous function over the rectangle $R = [a, b] \times [c, d]$. We first suppose that $f(x, y) \ge 0$. The graph of f is a surface with equation z = f(x, y). Let S be the solid that lies above R and under the graph of f, that is,

$$S = \{ (x, y, z) \in \mathbb{R}^3 : 0 \le z \le f(x, y), \ (x, y) \in R \}$$

- The first step is to divide the rectangle R into subrectangles. We accomplish this by dividing the interval [a, b] into m subintervals $[x_{i-1}, x_i]$ of equal width $\Delta x = (b a)/m$ and dividing the interval [c, d] into n subintervals $[y_{i-1}, y_i]$ of equal width $\Delta y = (c d)/n$.
- By drawing lines parallel to the coordinate axes through the endpoints of these intervals, we form subrectangles $R_{i,j}$ each of area $\Delta A = \Delta x \Delta y$.
- If we choose a sample point $(x_{i,j}^*, y_{i,j}^*)$ in each $R_{i,j}$, then we can approximate the part of S that lies above each $R_{i,j}$ by a thin rectangular box with base $R_{i,j}$ and height $f(x_{i,j}^*, y_{i,j}^*)$. The volume of this box is given by

$$f(x_{i,j}^*, y_{i,j}^*)\Delta A$$

• If we follow this procedure for all the rectangles and add the volumes of the corresponding boxes, we get an approximation for the total volume of S:



DEF: Let f be a continuous function over the rectangle $R = [a, b] \times [c, d]$. We define the double integral of f over R as

$$\iint_R f(x,y) \ dA = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{i,j}^*, y_{i,j}^*) \ \Delta A$$

if this limit exists.

$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i,j}^*, y_{i,j}^*) \ \Delta A$$

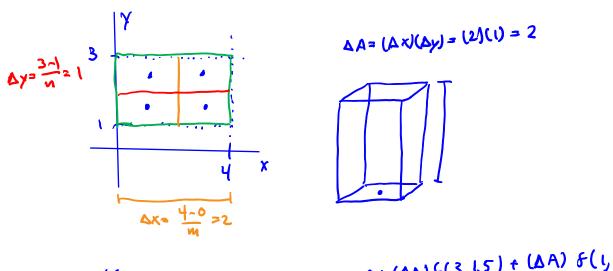
Midpoint Rule for Double Integrals

$$\iint_{R} f(x,y) \ dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(\overline{x}_{i}, \overline{y}_{j}) \ \Delta A$$

where \overline{x}_i is the midpoint of $[x_{i-1}, x_i]$ and \overline{y}_j is the midpoint of $[y_{i-1}, y_i]$.

Ex1. Use the Midpoint Rule with m = n = 2 to estimate the value of the integral

where $R = [0,4] \times [1,3]$. (Set up only) $\iint_{R} \underbrace{(2x^2 + y^2)}_{f(x,y)} dA$



$$\iint_{R} (2x^{2} + y^{2}) dA \approx (AA) f(1, 1, 5) + (AA) f(3, 1, 5) + (AA) f(1, 2, 5) + (AA) f(3, 2, 5)$$

$$\approx (AA) \left[f(1, 1, 5) + f(3, 1, 5) + f(1, 2, 5) + f(3, 2, 5) \right]$$

$$\approx 2 \left[(2(1)^{2} + (1, 5)^{2}) + (2(3)^{2} + 1, 5^{2}) + (2(1)^{2} + (2(3)^{2} + 2, 5^{2})) \right]$$

Sections 15.1 - 15.2: Double Integrals over General Regions

DEF. Let z = f(x, y) be a continuous function of two variables on the region \mathcal{R} .

$$\iint_{\mathcal{R}} f(x,y) \ dA := \int_{x_{\min}}^{x_{\max}} \Big[\int_{y_{\text{bott}}(x)}^{y_{\text{top}}(x)} f(x,y) \ dy \Big] dx \qquad \qquad \begin{array}{c} \text{"Tterated} \\ \text{Tubegrals"} \end{array}$$

Ex2. Compute
$$\iint_{\mathcal{R}} f(x,y) dA$$
 if $f(x,y) = \frac{y}{x^5 + 1}$, and $\mathcal{R} = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x^2\}$.

$$\iint_{\mathcal{R}} f(x,y) dA = \int_{0}^{1} \left(\int_{0}^{x} \frac{x^{y}}{x^{e} + 1} dy \right) dx$$

$$\prod_{\mathcal{R}} f(x,y) dA = \int_{0}^{x} \frac{y}{x^{e} + 1} dy = \frac{1}{x^{e} + 1} \int_{0}^{x^{2}} \frac{y}{x^{y}} dy = \frac{1}{x^{5} + 1} \left(\frac{y^{2}}{2} \Big|_{y=0}^{y=x^{2}} \right)$$

$$= \frac{1}{x^{5} + 1} \left(\frac{x^{4}}{2} - \frac{0}{2} \right) = \frac{x^{4}}{2(x^{5} + 1)} dx = \int_{x=0}^{x} \frac{du}{2(x^{5} + 1)} dx = \int_{x=0}^{1} \frac{du}{2(x^{5} + 1)} dx = \int_{x=0}^{1} \frac{1}{10} |u| |x| + c$$

$$= \frac{1}{10} |u| |x^{5} + 1| + c$$

Fubini's Theorem: If f(x, y) is continuous on the region \mathcal{R} , then

$$\iint_{\mathcal{R}} f(x,y) \ dA = \int_{x_{\min}}^{x_{\max}} \left[\int_{y_{\text{bott}}(x)}^{y_{\text{top}}(x)} f(x,y) \ dy \right] dx = \int_{y_{\min}}^{y_{\max}} \left[\int_{x_{\text{left}}(y)}^{x_{\text{right}}(y)} f(x,y) \ dx \right] dy$$

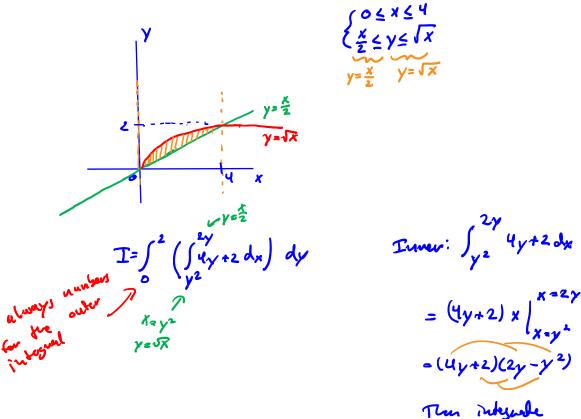
This means that we can exchange the order of integration and get the same answer.

CAUTION: If we change the order of integration, we need to find "new" limits of integration.

Ex3. It is known that

1 =
$$\int_0^4 \int_{x/2}^{\sqrt{x}} \{4y+2\} dy dx = 8$$

Sketch the region of integration for the integral and write an equivalent integral with the order of integration reversed.



PROPERTIES.

1. If $f(x,y) \ge 0$ for all (x,y) in \mathcal{R} , then $\iint_{\mathcal{R}} f(x,y) dA$ is the volume of the solid under the graph of z = f(x,y) above the region \mathcal{R} .

2. If f(x,y) and g(x,y) are both continuous on the region \mathcal{R} , then

$$\iint_{\mathcal{R}} \{f(x,y) \pm g(x,y)\} \ dA = \iint_{\mathcal{R}} f(x,y) \ dA \ \pm \iint_{\mathcal{R}} g(x,y) \ dA.$$

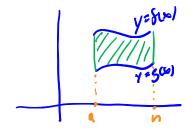
3. For any constant
$$c$$
, $\iint_{\mathcal{R}} cf(x,y) dA = c \iint_{\mathcal{R}} f(x,y) dA$.
4. If $f(x,y) \ge g(x,y)$, then $\iint_{\mathcal{R}} f(x,y) dA \ge \iint_{\mathcal{R}} g(x,y) dA$.

5. If $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$, where \mathcal{R}_1 and \mathcal{R}_2 don't overlap except perhaps on their boundaries, then

$$\iint_{\mathcal{R}} f(x,y) \, dA = \iint_{\mathcal{R}_1} f(x,y) \, dA + \iint_{\mathcal{R}_2} f(x,y) \, dA.$$

6. If we integrate the constant function f(x, y) = 1 over a region \mathcal{R} , we get the area of \mathcal{R} :

$$\iint_{\mathcal{R}} 1 \ dA = A(\mathcal{R}).$$



area =
$$\int_{a}^{b} 5\omega - g(x) dx$$

= $\int_{a}^{b} \left(\begin{array}{c} y \\ y \end{array} \right) \begin{array}{c} x - \delta(x) \\ y = 5(b) \end{array}$
= $\int_{a}^{b} \left(\begin{array}{c} \int_{x} 1 \\ y = 5(b) \end{array} \right) dx = \int_{a}^{b} 1 dA$

Ext. Compute
$$\iint_{\mathbb{R}} f(x,y) dA$$
 if $f(x,y) = y^{2}$, where \mathcal{R} is the triangular region with vertices $(0,1)$,
 $(1,2)$ and $(4,1)$.
 $(1,2)$ and $(4,2)$.
 $(1,2)$ and $($

Jx³sin(y³) dy =) x³ (sin(y³) dy not possible with what we know

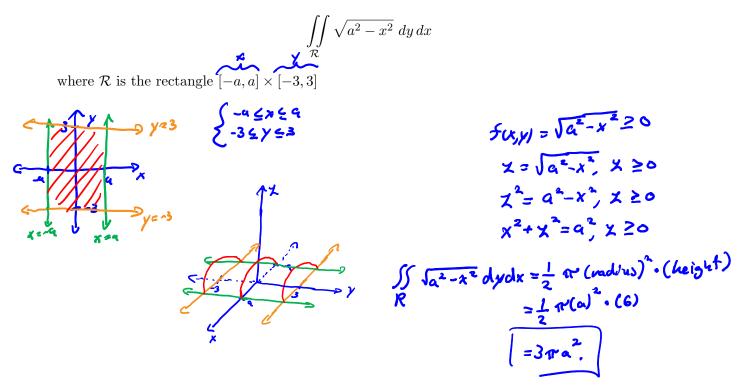
Ex6. Evaluate the following integrals:

(a)
$$\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, dy \, dx = \int_0^\infty \left(\int \chi^3 \sin(y^3) \, dx \right) \, dy$$

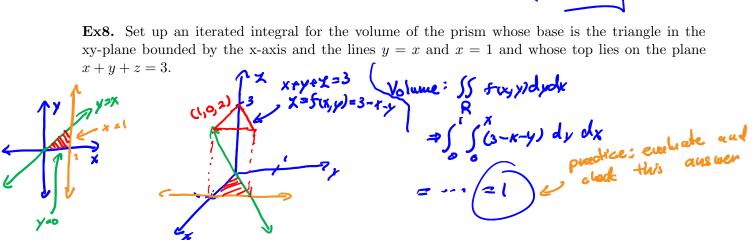
$$\int_{0}^{\infty} \int_{0}^{y \in x^{k}} \left\{ \begin{array}{l} x \in y \leq 1 \\ y \in y^{k} \neq y \in 1 \end{array} \right\} \\ Tumer: \int_{0}^{\sqrt{y}} \int_{x}^{x} \sin(y^{k}) dx = Si^{\frac{1}{y}}(y^{\frac{1}{y}}) \frac{x^{\frac{1}{y}}}{x^{\frac{1}{y}}} \left| \begin{array}{l} x = \delta \\ y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) - 0 \\ y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dx = Si^{\frac{1}{y}}(y^{\frac{1}{y}}) \frac{x^{\frac{1}{y}}}{x^{\frac{1}{y}}} \left| \begin{array}{l} x = \delta \\ y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dy \\ y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dy = -\frac{\cos(y^{\frac{1}{y}})}{y^{\frac{1}{y}}} \left| \begin{array}{l} y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dy \\ y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dy \\ y = y^{\frac{1}{y}} \left(\frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ y = -\frac{\cos(y)}{12} \right) \left| \begin{array}{l} y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dy \\ y = y^{\frac{1}{y}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \right| \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12} \left| \frac{y^{\frac{1}{y}}}{y^{\frac{1}{y}}} \sin(y^{\frac{1}{y}}) dy \\ z = -\frac{\cos(y)}{12}$$

Volume under the graph of a nonnegative function.

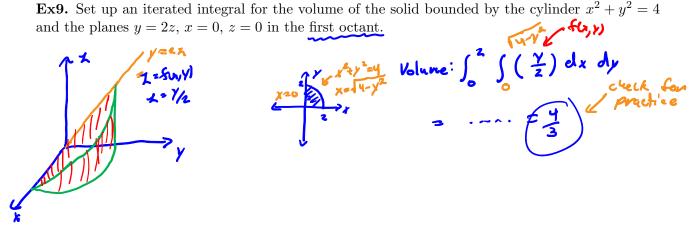
Ex7. Let a be a positive number. Use geometry to evaluate the following double integral



Ex8. Set up an iterated integral for the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies on the plane



Ex9. Set up an iterated integral for the volume of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes y = 2z, x = 0, z = 0 in the first octant.



Average Value of a Function.

Recall that the average value of a function f of one variable defined on an interval [a, b] is

In a similar fashion we define the average value of a function f in two variables defined on a region \mathcal{R} to be

$$f_{ave} = \frac{1}{A(\mathcal{R})} \iint_{\mathcal{R}} f(x, y) dA$$

where $A(\mathcal{R})$ is the area of the region \mathcal{R} .

If $f(x, y) \ge 0$, the equation

$$A(\mathcal{R}) \cdot f_{ave} = \iint_{\mathcal{R}} f(x, y) dA$$

says that the cylinder with base \mathcal{R} and height f_{ave} has the same volume as the solid that lies under the graph of the function z = f(x, y).

Ex10. Find the average value of $f(x, y) = 10 - x^2 - y^2$ over the region \mathcal{R} enclosed by the curves $y = 0, y = x^2$ and x = 1.



TO-DO:

(1) Let g(x, y) be a continuous function. Sketch the region of integration and then reverse the order of integration for

$$\int_0^1 \int_{\sqrt{y}}^{2-y} g(x,y) \ dx \ dy.$$

(2) Consider $\iint_{\mathcal{R}} x^2 + y^2 dA$, where \mathcal{R} is the region bounded by y = 2x and $y = x^2$. Sketch the region of integration \mathcal{R} and set up iterated integrals for both orders of integration.

(3) The value of
$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{4+y^{3}} dy dx$$
 equals
(a) ln(3)
(b) $\frac{\ln(3)}{3}$
(c) ln(12)
(d) $\frac{\ln(12)}{3}$

(4) Set up an iterated integral to compute $\iint_{\mathcal{R}} (x+2y) \, dA$ where \mathcal{R} is the region bounded by $y = x^2$ and $y = 4 - x^2$.